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SUMMARY

Motivated by Bahadur [1] and Diaconis [3], a generalized Bahadur
expansion for joint probability densities in a product of Borel spaces is
introduced. When the marginal spaces are compact groups we exploit the
techniques of harmonic analysis (Helson [4], Chandrasekharan [2]) to define
the Bahadur correlations in such a way that they transform covariantly under
all group translations. )
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- 1. Introduction

P. Diaconis [3] has amply demonstrated the usefulness of group
representations in the spectral analysis of data. As a special application he has
illustrated how Bahadur’s item analysis [1] can be looked upon as the

exploitation of harmonic analysis in the group z‘;, the k-fold product of
Z,={0,1} with addition modulo 2. :

Here a general version of Bahadur’s expansion is presented for a joint

probability density in terms of orthonormal bases for the L2-spaces of marginal
distributions. This leads to natural notions of higher order interactions or
correlations between the marginal components. Inspired by Diaconis’ approach

we present orthonormal bases “for L%(P) where P is a general probability
distribution in a compact group with a nowhere vanishing density. These bases

are eminently suitable for writing Bahadur expansions in Z Y with d >2. This
reduces to Bahadur’s method when d=2. Furthermore the higher order
correlations arising from these expansions transform covariantly under all group
translations.

2. A General Expansion for Joint Probability Densities

Let (X;, %), i=1,2,...,n be separable Borel spaces and let P be a

n
probability measure on the product Borel space ® (X;, 7)) with margfnal
i=1 e
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distributions P; on (X;, 7;), i=1,2,...,n. Denote by Q = ® P, , the product
i=1
measure and- assume that P is absolutely continuous with respect to Q and

2
{ dp
I[dQJ dQ < e 2.1)
Let (I, ¢;;, Pp, . . . } be an orthonormal basis of functions for the Hilbert

space Lz(Pi) where I denotes the constant function identically equal to unity.
Note that the sequence ¢;J=1,2,... may be of finite or infinite length
depending on the nature of P;. Define

\u, by iy Ja (X Xg, e X)) = H(P.r,(x) 1<11<|2< ip<n
r=1
(2.2)
These functions together with I constitute an orthonormal basis for L(Q) and

by the assumption (2.1), d(l; admits the Hilbert space expansion

> Piy iy oipys gy ooy Vi iy i

RIS WA

dP _
aQ Vi i Jy 3, 9Q

=EpV¥i i :j ..

fEP denoting expectation with respect to P. It is to be noted that

Pi;j = Ep¥y=Ep ¢;=0

and hence there is no term corresponding to m=1 in (2.3). The right hand
side of (2.3) converges in LZ(Q) and

f(—Q—l)dQ D) ot i

m=2 lSil<...<imSn
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where
2 -_ .
Oiiy e iy E . Piyiy.ins dydy o Jm (2.6)

[

The left hand side of (2.5) measures the derivation of P from indepeddence
of its marginal constituents and 0l iy i is the contribution to this deviation

arising from the m-th order interaction of the factors i), g, iy If

o —I ——1 dQ then the ratio 052 iy, /o2 is a measure of the relative
unponance of the m-th order interaction of the factors iy, iy, ...,i,;,. It is also
important to note "that °i|i2...i is independent of the choice of
{o; j=1,2,..;1<i<n}. This can be easily seen as follows : we have the
direct sum decomposition

L2(@) = CI® %K, %=1I'
In the Hilbert space ‘tensor product

L’Q =9 CId %)

i=1

the subspaces
K iy iy =1®..001® % ®IQ.. ®][®9§2® BI®K_ ® .®1

where the unit vector I appears in positions other than iy <iy<...<ipy, make
the direct sum decomposition

rQ=-Cc166  © %, i

m=1 lSi|<...<imSm

2 _ a e
0i|i2"'im = Ei|~ (dQ 1)"

where E;; is the projection on the subspace % ; .

and

’

Suppose x() xm ..o x™ are N independent observatmns wnh the
probability law P in ®X Defme .
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N
p =1 v )
Pisly i didy i = N 2 Vi igijy e, &)
r=1
Owing to (2.4), 6‘1 <evi; j, ...i_ has expectation Piy...ig;j, ...j. . If P=Q then
a8 N — e the family (\/ﬁai,...i j,...j} becomes a collection of

independent (complex) Gaussian variables with mean 0 and unit variance in
law.

Suppose that each X; is a finite set of cardinality diand P,({x}) >0
for every x e X;. Assumé that the set {0i1, i, -, P;q ) is closed under

complex conjugation. Then under the law Q, the random variable

A 2
N E Poi iy g ]
Jyoodm

has, as N — o, a limiting -distribution with @ -1 (d~1)... (d; -1)

degrees of freedom for every 1 <i, <ip<...<i,<n.

We call (2.3) a Bahadur expansion for % The (complex) scalar
o’ Piji,...i; j,...j_ 18 called the m-th order Bahadur correlation between the
(ij,....ip)th marginal components arising from the basis elements

@;; » 1 =r <m. This is a brief summary of the central idea in Bahadur’s item
analysis cast in a general setting.

3. Orthonormal Bases Arising from Harmonic Analysis in a Compact Group

In Section 2 it is already seen, in the context of spectral analysis of data,
the importance of constructing simple orthonormal bases of the form

{L,¢,¢...}in L*P) where P is a probability measure on a separable Borel

space (X, 7). Here, consider the case when X is a compact metric group and
. ¥ is its Borel o-algebra generated by the open sub/s\ets of X. To begin with

we assume tl}\at X is an abelian group. Denote by X its character group. An
element ¥ e X is a continuous homomorphism from X into the 1-dimensional
torus, namely, the multiplicative group of complex numbers of modulus unity,
Use the symbol dx to denote integration with respect to the normalised Haar
measure on X. This normalised Haar measure is the uniform distribution on
X. By LX) we mean the Lz-space‘wilh respect to this uniform distribution
on X. The set X is at most countable and its elements constitute an orthonormal
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basis for L (X). For any f € LX(X) denote by f its “Fourier transform” which
is a function defined on the character group X by s

oo = J 100 xax BN RY
X ' .

The following are the basic relations :

(=3 7 ® | 32
1eX
[ oma =Y f@gQ (33)
xeX

for all f,g e L%(X). Here the right hand side of (3.2) converges in LX)
whereas the right hand side of (3.3) converges absolutely. (3.2) is the Fourier
inversion formula whereas (3.3) is Parseval’s identity (See Helson [4],
Chandrasekharan [2]).

Our aim is to construct an orthonormal basis for L%(P) where P is a
probability measure on X which has a density function p(-) with respect to
the uniform distribution satisfying p(x)> 0 for every x € X. Define

1
E,0=x(MpK) 2, xeX e X (3.4)
It is clear that \ "
B85, = Sn . .39

A
{ E,x ,x € X ) is an orthonormal basis for L2(P) but the constant function T does.

not belong to this basis unless p () = 1. In order to overcome this obstacle
introduce the functions

1
q(x) = p(x)2 (3.6)

and
n, 0=50-q00, x#1I 3.7
_ a being the Fourier transform of the element q € L2(X). Then we have
Epn, =0 (3.8)
Epily, Ty, = Sy, ~ 4 000 302) (3.9)

o
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Then the family My » 2 # I together with the constant function Il span L(P).
We shall now orthonormalise (nx » X# I} using (3.9). From (3.3) we have

Y1ae1? = [qetdx=1

X €
and hence
Siawt? = 1-1gm12
x#1
= 1-(Jawdn? (3.10)

Thus (3.9) can be expressed as
Epny, My, = 8y % ~u (1) B0 + a® ux,) ulyy) (3.11)

a=fqwdx @1
X

" 1, .

u@) = 1-a?2 qy (3.13)

Slul=1 | » (3.14)
YA

In other words the covariance matrix of the complex-valued random variables
(nx, 1#Lye 'S undergoes a spectral decomposition with just two

eigenvalues 1 and o where the spectral projection corresponding to o? is
one-dimensional. Now define :

O =1, 0+ -Du Y, ¥GIn, ®) (3.15)
x':l R
Then (3.11) and the preceding remark imply that the family (p; X 21 together

with the constant function ¥ constitute an orthonormal basis for L%(P).
Substituting for u from (3.13) and using (3.2) and (3.6) we observe that (3.15)
simplifies to

_1 .
9§ 0={xw -1 +[ v a8 rpx 2 -+ [qi ayr dep
. X . X

(3.16)
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Thus the following theorem is proved.

Theorem 2.]1. Let X be a compact metric abelian group with character
group X. Suppose P is a probability measure on X with density function
p(x)>0 for all xeX with respect to the uniform distribution. Define

1 .

- A
q(x) = p(x)? and (p;,x;e 1, xe X by (3.16). Then the family of functions
4, q); ,x #1) is an orthonormal basis in LX(P).

Remark 2.2. Suppose that P is replaced by its left translate P, defined by
P, (E) = P(a”' E) for any Borel set EcX,ae X. Then (3.16) implies that
EIOEROLCEEY

This has the following implication for the Bahadur correlations. If

Xi»iﬁ 1,2,...,n are  compact  metric abelian  groups and -

xi€Xpi=12,....m F is a_probability measure on X1®...6§>Xn with
marginals P’; in X; such that P’ is absolutely continuous with respect to
Q=P ®...®P,and (% e LXQ’) write

P
Piiy...ips X, %y

m

= Ep Wi, ... % %, %
where . ..

m
P,
\Vil iz"'im; Xilx-lz-..xim (xl’ e Xn) =rI=-Il(pxr'r (xir)

Then for a= (@, ..., 2,) € X; ® ... ® X, one has

Py ' p
Pisiyis G X X I xi’(a,)p;]_l_im; % e X

U R O | iy m
In other words the Bahadur correlations for Pf‘ and P, differ just by the phase
factors TI7_ | m of modulus unity whene;er we ;se orthonormal bases of
Theorem 2.1.

Example 2.3. Let X = {0,1,2,...,d—1} with group operation being
addition modulo d. Then X = {I,%;. X -+ Xg—1 } Where

2 () = exp2miki/d, 0<j<d-l
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IfP({j)n= p;> 0 for 0<j<d-1is a probability distribution on X then define

1
O () = (exp2mikj/d-(1+ )" qQRIPZ-A+a) &) (3.17)
d-1
S
j=0 -

where o=

=N

ﬂ-

(=%

G =L Z " exp 2mikj/d

Then (I, @}, @5, ..., ®§_, } is an orthonormal basis for L’(P).

Going back to Section 2, if each X, is the finite set
{0,1,2,...,d-1 } and P is the probability distribution on X1 ®...®X with
i-th marginal P, where P, ({j } )= Pij 0 <j sd-land @, = (pk defined through
(3.16) one obtains the Bahadur expansxon (2.3). When d =2 it coincides with
the situation in item analysis.

Remark 2.4. Theorem 2.1 admits a simple generalization to the case when the
compact group X is not necessarily abelian. Let X = { My, Ty, . .. } be a maximal

family of inequivalent, irreducible unitary matrix representations of X with
Ty being the trivial one-dimensional representation so that my(x)=1 for all

x € X. Denote by & an arbitrary element of X and d(r) the order of the matrices
ni(x), x € X. Imitating (3.16) define the d () xd () matrix-valued function
oF by
1 _1
O () =dmz (RO -1+ W) 21+ §(m)  (.18)

where p(x) is the density of a probability measure P with respect to the
normalised Haar measure (or uniform distribution on X), p(x)>0 for all
x e X, .

1
a = [ pxy2 dx
X
A 1
q ()= f p(x)z m(x)dx
X

and m#m; Then the constant function I together with the matrix entries
(p::,ij (), 1ij<dm) of @), m#m, constitute an orthonormal basis for
L* (P).
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If X;,1< i< n are compact metric groups, P’ is a probability distribution
on the product space X; ® ... ® X, with j-th marginal P;,1< i< n so that
condition (2.1) is fulfilled and each P satisties the conditions of the preceding
paragraph then one can define the Bahadur correlations through

S %) ( )
pl'lz"'l“" n’l 1 J‘22“2 J:m
with the help of the bases {L ¢ o }in LE(P). If P, LB =P ( a'E)is the

’rv

translated dlsmbutlon through the element a € X; ® ... ® X, then

P .

2 Gy G G
Pi, iy oy ﬂj]'kl "j;zkz"‘“im

- Z ﬂ(") (a )TCGZ) (a: ) ) (a ) pl 5

Sp Sy Sm

Co ) GG
o Tk, iy ik
In other words the Bahadur correlations based on the factors iy, iy, ..., ip, and

*'m

the representations 7)1 < r < m of the groups X,, 1 € r £ m transform

covariantly according to the tensor product representation - | n (a;.) under

group translations by a € X; ® ... ® X,

Example 2.5. As an illustration for the orthonormal basis coming from
(3.17) one may consider the group S; , the symmetry group of all permutations

of the set {1, 2, 3}. S; has six elements and three irreducible representations.
One of them mg is trivial, the second one denoted by is the one-dimensional
signature representation defined by m, (0)=1 if ¢ is an even permutation and
n; (0)=-1if ois anodd permutanon and the third one 7, , the two dimensional
representation with

n, (i) = (1)‘1)], ma2) =| ‘1)]
1 - 1
man=|tgs 3 ma =| B4
2 2 2 T2
B £ 13
n,(123) = ‘/23— % , m, (132) = é- 21
2 T2 2 2
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